35/100(x)+39=x

Simple and best practice solution for 35/100(x)+39=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 35/100(x)+39=x equation:



35/100(x)+39=x
We move all terms to the left:
35/100(x)+39-(x)=0
Domain of the equation: 100x!=0
x!=0/100
x!=0
x∈R
We add all the numbers together, and all the variables
-1x+35/100x+39=0
We multiply all the terms by the denominator
-1x*100x+39*100x+35=0
Wy multiply elements
-100x^2+3900x+35=0
a = -100; b = 3900; c = +35;
Δ = b2-4ac
Δ = 39002-4·(-100)·35
Δ = 15224000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15224000}=\sqrt{1600*9515}=\sqrt{1600}*\sqrt{9515}=40\sqrt{9515}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3900)-40\sqrt{9515}}{2*-100}=\frac{-3900-40\sqrt{9515}}{-200} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3900)+40\sqrt{9515}}{2*-100}=\frac{-3900+40\sqrt{9515}}{-200} $

See similar equations:

| (x^2+3)^(-2/3)+(x^2+3)^(-5/3)=0 | | 9^(z)=27 | | –3x+32–6x=–2(5x+10) | | 4(n+1)+(n+3)=5(n+1)+12 | | 9^z=27 | | (1/3)x=(2/5)x+(2/3) | | 11y+4=0 | | 48+x=106 | | 2=1/2a×4.6 | | 46-w=157 | | 4x-(5x+4)=4x-49 | | 4x-(5x+4)=4x+4- | | 1,4-0,6y=0,7-0,5y | | 3t+9=102 | | 6y-2+2(4y+4)=-2(y+3) | | 3*x-12=39+2*x | | 4x-(5x+4)=4x+49 | | 9+9x=8x-16 | | (3^t*2^t-1)-(2^t*3^t-1)=0 | | 3​(3+3​x)=8​(x-2​) | | 14(z+48)=826 | | 5x+2(x+6)=68 | | 9=h/9​ | | 5^2^x=15,625 | | 1.5xX=250 | | 3.3(x+3.1)=83 | | f/1/6=13 | | 15x+8x-11+3x+9=180 | | 32=8(x+8)-4x | | -12x-3=11x-3 | | 2x-5=8x+17 | | -10y=-9y−3 |

Equations solver categories