If it's not what You are looking for type in the equation solver your own equation and let us solve it.
34y=45y^2
We move all terms to the left:
34y-(45y^2)=0
determiningTheFunctionDomain -45y^2+34y=0
a = -45; b = 34; c = 0;
Δ = b2-4ac
Δ = 342-4·(-45)·0
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-34}{2*-45}=\frac{-68}{-90} =34/45 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+34}{2*-45}=\frac{0}{-90} =0 $
| 9x-6=4x+18 | | 4x-1=-8-x+12 | | 5x-21+4x-11=3x-1 | | 10x+20=55 | | 3x+3-9=2x-4 | | 45y-8=34y2 | | 8(v+47)=80 | | -1=9+k/9 | | 14a-8=22+20a | | πy=y | | −6=4(x−4)+6x | | 9(3x-8)=-207 | | 5x-27=12x+1 | | 10-7x=6-6x | | 4(3x+9)=16 | | πy=y2 | | 11+x-3=2x-2 | | 12a+5=18 | | 2(5=2x)=5(x-6)+33 | | -y^2=y | | 7y+-4=-19+4y | | 56-45y=3y | | w-7/8=4 | | .(2x-1)+(5x+11)=180 | | 56y=25y | | -8(6b-8)=-272 | | 13=m/2+9 | | 16c=240 | | (5y-7)=(3y-1) | | n/4+10=-62 | | 78y-56=y | | -8-r=7r |