If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45y-8=34y^2
We move all terms to the left:
45y-8-(34y^2)=0
determiningTheFunctionDomain -34y^2+45y-8=0
a = -34; b = 45; c = -8;
Δ = b2-4ac
Δ = 452-4·(-34)·(-8)
Δ = 937
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-\sqrt{937}}{2*-34}=\frac{-45-\sqrt{937}}{-68} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+\sqrt{937}}{2*-34}=\frac{-45+\sqrt{937}}{-68} $
| 8(v+47)=80 | | -1=9+k/9 | | 14a-8=22+20a | | πy=y | | −6=4(x−4)+6x | | 9(3x-8)=-207 | | 5x-27=12x+1 | | 10-7x=6-6x | | 4(3x+9)=16 | | πy=y2 | | 11+x-3=2x-2 | | 12a+5=18 | | 2(5=2x)=5(x-6)+33 | | -y^2=y | | 7y+-4=-19+4y | | 56-45y=3y | | w-7/8=4 | | .(2x-1)+(5x+11)=180 | | 56y=25y | | -8(6b-8)=-272 | | 13=m/2+9 | | 16c=240 | | (5y-7)=(3y-1) | | n/4+10=-62 | | 78y-56=y | | -8-r=7r | | 45^45y=y | | 9a+13=9a | | 3+3/4y=-5 | | -5(y+9=-10 | | 16=12-2z | | 6/m=9/6 |