3/x+3-1/x-2=5/2x+6

Simple and best practice solution for 3/x+3-1/x-2=5/2x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/x+3-1/x-2=5/2x+6 equation:



3/x+3-1/x-2=5/2x+6
We move all terms to the left:
3/x+3-1/x-2-(5/2x+6)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 2x+6)!=0
x∈R
We add all the numbers together, and all the variables
3/x-1/x-(5/2x+6)+1=0
We get rid of parentheses
3/x-1/x-5/2x-6+1=0
We calculate fractions
(-2x+3)/2x^2+(-5x)/2x^2-6+1=0
We add all the numbers together, and all the variables
(-2x+3)/2x^2+(-5x)/2x^2-5=0
We multiply all the terms by the denominator
(-2x+3)+(-5x)-5*2x^2=0
Wy multiply elements
-10x^2+(-2x+3)+(-5x)=0
We get rid of parentheses
-10x^2-2x-5x+3=0
We add all the numbers together, and all the variables
-10x^2-7x+3=0
a = -10; b = -7; c = +3;
Δ = b2-4ac
Δ = -72-4·(-10)·3
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-13}{2*-10}=\frac{-6}{-20} =3/10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+13}{2*-10}=\frac{20}{-20} =-1 $

See similar equations:

| 9(7x+7)=-1 | | -4p-9+5p=4 | | 45f-3=1 | | 8y+6=86 | | -m-6=30 | | 1.75x+12=30 | | 2m-58=36 | | 3x+41+x-13=180 | | x/3+x−2/5=6 | | (1/3)d+100=1.25d-10 | | -m-9=30 | | 6(x+2)-3(x/2-1)=51 | | -10=-26+8y | | (10x+4)/(7)=8 | | u11+6=14 | | 2m−58=36 | | 3a+1/3=-11 | | (4/5)y=20 | | 2x+41+x-13=180 | | 8p−6=9p | | 6x+12-3=51 | | 84=14+7f | | 9x–6=3x-12 | | 5x-3(2x-1)+7=2(x+1)-5 | | 16=4+3w | | 3(q−5)=9 | | 2(x+3)2=-54 | | -8x+16=-5x+19 | | 1/2x-6=3.5 | | s-9/2=3 | | 10x+21=4x+9 | | 8n2-80n+128=0 |

Equations solver categories