If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8n^2-80n+128=0
a = 8; b = -80; c = +128;
Δ = b2-4ac
Δ = -802-4·8·128
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-48}{2*8}=\frac{32}{16} =2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+48}{2*8}=\frac{128}{16} =8 $
| 10(x-5)-50=10x+100 | | 17p+8=8 | | 28-x=7(x-4 | | 2x+10°+x+26°=180° | | s−9/2=3 | | P(x)=0.15x-3500 | | s−92=3 | | 8x-7=2(3x+4)-11 | | y+3=8(14)+18 | | 400=15x=200+10x | | 6v^2+v-1=0 | | 6m-11=4+m | | 2/3x+5=5/7x-3 | | 3(3-4x)=12x-9 | | (3x+2)/(2)=13 | | x2+20=2x | | 3x+12=7x+4 | | 2(w+7)=20 | | -79+2=11q-8q | | (3v-8)(5v-4)=0 | | -4+7x=-25 | | m/6-12=-15 | | x^2+3x+83=x^2+8x+102 | | 11+9v=38 | | -2(y-5)+10=6y+20 | | 13=m/2+10 | | 5+3(x-4)=2(x+1 | | 2^-3y+1=16 | | -2y+14=-2(-y-8) | | 25y=−4 | | 20j-9j+j+8j-6j=14 | | 25y=−4. |