If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/8n+1-17/6n=-47/12
We move all terms to the left:
3/8n+1-17/6n-(-47/12)=0
Domain of the equation: 8n!=0
n!=0/8
n!=0
n∈R
Domain of the equation: 6n!=0We get rid of parentheses
n!=0/6
n!=0
n∈R
3/8n-17/6n+1+47/12=0
We calculate fractions
13536n^2/576n^2+216n/576n^2+(-1632n)/576n^2+1=0
We multiply all the terms by the denominator
13536n^2+216n+(-1632n)+1*576n^2=0
Wy multiply elements
13536n^2+576n^2+216n+(-1632n)=0
We get rid of parentheses
13536n^2+576n^2+216n-1632n=0
We add all the numbers together, and all the variables
14112n^2-1416n=0
a = 14112; b = -1416; c = 0;
Δ = b2-4ac
Δ = -14162-4·14112·0
Δ = 2005056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2005056}=1416$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1416)-1416}{2*14112}=\frac{0}{28224} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1416)+1416}{2*14112}=\frac{2832}{28224} =59/588 $
| 3x+(x+3)=5 | | -106=22+8(3p-4 | | 3x+(x+4)=5 | | 4x+2=105 | | 3x+(x+4)=10 | | 9a−a+4=12 | | 19+13-6x+2x=2x-10 | | -(k+12)-5(9-9k)=-9k-4k | | 10(t+1)=2(t-12)-22 | | .6h+82=85 | | 3/4x+10=17 | | 3.5x-15=6.5x+12 | | -72-3x=73-8x | | N^2+-56=n | | 1/2x+9=28 | | -5a+3/2a=-7/4 | | 3.25t+25=-1.75t | | 5(y+3)=9y-5 | | 1/5.x=7 | | x/9=3/6 | | 7/3=(2x+5)x | | 6x+15x+16=-5 | | 3.25t+1.75t=-25 | | -9+4x=x+2x | | 1.26x=0.5-x | | 2x+(x-3)=10 | | 7/3=(2x+5)/x | | 3.25t+1.75t=-8 | | 30+12d=90 | | -3x+(x-6)=10 | | -2k-5-9k=18 | | 6h+15h−-16=-5 |