If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/4(20x+32)-1=-2/3(15x-9)
We move all terms to the left:
3/4(20x+32)-1-(-2/3(15x-9))=0
Domain of the equation: 4(20x+32)!=0
x∈R
Domain of the equation: 3(15x-9))!=0We calculate fractions
x∈R
(9x1/(4(20x+32)*3(15x-9)))+(-(-8x2)/(4(20x+32)*3(15x-9)))-1=0
We calculate terms in parentheses: +(9x1/(4(20x+32)*3(15x-9))), so:
9x1/(4(20x+32)*3(15x-9))
We multiply all the terms by the denominator
9x1
We add all the numbers together, and all the variables
9x
Back to the equation:
+(9x)
We calculate terms in parentheses: +(-(-8x2)/(4(20x+32)*3(15x-9))), so:determiningTheFunctionDomain 8x^2+9x-1=0
-(-8x2)/(4(20x+32)*3(15x-9))
We add all the numbers together, and all the variables
-(-8x^2)/(4(20x+32)*3(15x-9))
We multiply all the terms by the denominator
-(-8x^2)
We get rid of parentheses
8x^2
Back to the equation:
+(8x^2)
a = 8; b = 9; c = -1;
Δ = b2-4ac
Δ = 92-4·8·(-1)
Δ = 113
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{113}}{2*8}=\frac{-9-\sqrt{113}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{113}}{2*8}=\frac{-9+\sqrt{113}}{16} $
| 0.3(n-5)=0.4n-0.2n | | 1/2(16x+14)-16=-1/5(15x-10) | | 6/8=-2x+3x+7/8 | | 3x+6-x=20 | | -2x+10-7x=46 | | 9-x+3x=11 | | (6/(x-1))-(1/2)-(4/(3x+3))=0 | | -2(a-8)=-22 | | 4x+3000=41000 | | -4-4x=16 | | 7.1=2(3.14)*r | | 7.1=2(3.14)r | | 9v-14=-77 | | 11x-(5x-3)=33 | | 20=4-8x+4x | | 2x(-3x-6=0 | | (6/(x-1))-(4/(3x+3))=0 | | 2x(x/4*8)=18 | | (2x-1)x3-(5x-3)x2=-4x6 | | 5+0.1x+0.0003x^2=69 | | (6/(x-1))-1/2=4/(3x+3) | | 2x+5=3x−10 | | 96=24x+8x | | x+1/4-7=3 | | -8x+96=24 | | (6/x+1)-1/2=(4/3x+3) | | -x+2x+3x=100 | | 3(x+7)=-7 | | -2y+11=7 | | 3(4x-5)+4(2x+6)=69 | | 3x^2-133=59 | | 7.4x=3=6.4x |