If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2b+b+(45+b)+(2b-90)+90=540
We move all terms to the left:
3/2b+b+(45+b)+(2b-90)+90-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
3/2b+b+(b+45)+(2b-90)+90-540=0
We add all the numbers together, and all the variables
b+3/2b+(b+45)+(2b-90)-450=0
We get rid of parentheses
b+3/2b+b+2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 6x−8=−9x−53 | | 11x-5x+140=11x+70 | | 2x+6+3x=x | | 11x-5x+140=11x+70x | | 11-5x+140=11x+70x | | -7x+5x2-5x3+8x+3x2-7x3+x3=0 | | 7-5(l-1)+2(l-3)=11-2l | | -10+5x=5x-10 | | 11-5x+140=11x+70 | | 8-3(x+5)=20 | | 5x-6x+3=-2x+12-14 | | 5/6t=13/13 | | 1.1x-3.4=0.6x-1.7 | | 3(f-12)=-8 | | (4x+8)(2x)=280 | | 8(-8x-4)-6=410 | | e+e=3e+4 | | (2×x)+(×/2)=210 | | (j-7)^2=0 | | 5x+7=38+3x | | -4x-10=3x-3 | | 5/x-50=100 | | 6-4K=-3k-4 | | 8(−8x−4)−6=410 | | 5x-7=38+3x | | 5(x+4)=3(2x-4)+7 | | 25-1/4x=20 | | 8+2ee=2 | | 1/9/x=x/4/9 | | 6b-4=b-15 | | 5x-19=90 | | (8/9)x-10/9=3 |