If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3/2b+(2b-90)+90+b+(b+45)=540
We move all terms to the left:
3/2b+(2b-90)+90+b+(b+45)-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+3/2b+(2b-90)+(b+45)-450=0
We get rid of parentheses
b+3/2b+2b+b-90+45-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-90*2b+45*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-180b+90b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| 25(4x+3)=180 | | n3+5=-1 | | 5r+8=2r-6 | | 0.10(y-7)+0.04y=0.06y-0.9 | | 8y-(5y+)=16 | | 108n=180n-360÷n | | 22-7x=10 | | 7x-4(-6x+10)=177 | | (6x-4)+8=(17-x)=8 | | 2y+5=72 | | -2(-3=4x)=2x | | 3/4(8x-4)=4-1/2(6+2x) | | x/3-19=2 | | -6(b-3)-4(6b+8)=76 | | 149-2c=109 | | 5(3n-2)=56 | | 20+3h=245 | | -1=g+15/6 | | 9x-10=8x-20 | | 5x-1=1499 | | 13+6(4x–5)=3(8x+1)-20 | | 81=9(m+3) | | 12.25-x=22.95 | | k/5.2+81.9=47.2= | | 110y-2.75=107.25 | | 11x+-13=9x+3 | | 50-4p=6 | | 2x+5/3=1 | | 2z+3z=24 | | -4y=-12.8 | | 12.25-c=22.95 | | 6(n+1)=9(n-1) |