If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(1/2x+9)=x-12+1/2x
We move all terms to the left:
3(1/2x+9)-(x-12+1/2x)=0
Domain of the equation: 2x+9)!=0
x∈R
Domain of the equation: 2x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
3(1/2x+9)-(x+1/2x-12)=0
We multiply parentheses
3x-(x+1/2x-12)+27=0
We get rid of parentheses
3x-x-1/2x+12+27=0
We multiply all the terms by the denominator
3x*2x-x*2x+12*2x+27*2x-1=0
Wy multiply elements
6x^2-2x^2+24x+54x-1=0
We add all the numbers together, and all the variables
4x^2+78x-1=0
a = 4; b = 78; c = -1;
Δ = b2-4ac
Δ = 782-4·4·(-1)
Δ = 6100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6100}=\sqrt{100*61}=\sqrt{100}*\sqrt{61}=10\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-10\sqrt{61}}{2*4}=\frac{-78-10\sqrt{61}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+10\sqrt{61}}{2*4}=\frac{-78+10\sqrt{61}}{8} $
| (5x+3)+27=90 | | 2x+3=+1x+8 | | (4x+3)+45=180 | | 14u+2u+4u=20 | | 1/9x=8+1/9x | | (x-39)+2x=180 | | 11s-10s=15 | | 5n+22=n | | 11t-6t=15 | | (2x+5)4=x+1 | | x+14+60=90 | | 8x-3+45+90=180 | | -9−2j=-j | | 5*(12-3x)-2*(7x+8)=-43 | | 8x+5=+3x+4 | | -8-5b=-4b-13 | | n-(2/5)=(1/2) | | b-2/4=7/2 | | 8+4x=2x-10 | | 5-x=2x+23 | | x/56=14 | | n-2/5=1/2 | | 3u-10=2u | | 4x+10+5x-19=180 | | 4x+10=5x-19 | | -10h=-9h+8 | | 6x-9=2x+7x= | | 1/2z+6=3/2(z-6) | | 3x+9=4x+19 | | -8c=-5-3c | | 11-12x/3x+2-8x-8x-9/7-2x=0 | | 2/5*u=10/3 |