11-12x/3x+2-8x-8x-9/7-2x=0

Simple and best practice solution for 11-12x/3x+2-8x-8x-9/7-2x=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11-12x/3x+2-8x-8x-9/7-2x=0 equation:



11-12x/3x+2-8x-8x-9/7-2x=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
-18x-12x/3x+13-9/7=0
We calculate fractions
-18x+(-84x)/21x+(-27x)/21x+13=0
We multiply all the terms by the denominator
-18x*21x+(-84x)+(-27x)+13*21x=0
Wy multiply elements
-378x^2+(-84x)+(-27x)+273x=0
We get rid of parentheses
-378x^2-84x-27x+273x=0
We add all the numbers together, and all the variables
-378x^2+162x=0
a = -378; b = 162; c = 0;
Δ = b2-4ac
Δ = 1622-4·(-378)·0
Δ = 26244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{26244}=162$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(162)-162}{2*-378}=\frac{-324}{-756} =3/7 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(162)+162}{2*-378}=\frac{0}{-756} =0 $

See similar equations:

| 2/5*u=10/3 | | 10/5*u=10/3 | | x+3/8+x+2/3=1 | | 4(m+31)=36 | | 6/5u-4/5u=10/3 | | 2x+3(15+4x)=25 | | 24+7x=-11 | | 3-1/6n=1/6n-1 | | x2+x9=2 | | 112+7x=162 | | 1/8x+3=90 | | 180=4x-268 | | (-11/6)+m=-2.6 | | r2+5r+3r2-2r=0 | | -5*(x+6)=-3x | | 5/3x+3/2x-4/x=10 | | y+6=2(×-3) | | -9(r-992)=-18 | | 70+(x+30)+(180-{3x+20})=180 | | c+58=916 | | 70+(x+30)+(180-{3x+20)}=180 | | 1/2(4x+20+4=24 | | 26x+11=180 | | z+1.5=-3.7 | | 3x-x+2=(2x-1) | | 4x^2+48x-120=0 | | 3x-x+2=(2x-1 | | 7.5=3h | | -2x–4(3x–3)=-2 | | 14=-6t-4 | | 5(x-2)+6=2(x+4 | | y+49=285 |

Equations solver categories