If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-5y-2=0
a = 2; b = -5; c = -2;
Δ = b2-4ac
Δ = -52-4·2·(-2)
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{41}}{2*2}=\frac{5-\sqrt{41}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{41}}{2*2}=\frac{5+\sqrt{41}}{4} $
| 15y+5=50 | | 2x+4+4x=-20 | | -40=-v/7 | | -7(2x-1)=4 | | 29+y=30 | | 200=(x/0.85) | | 3x+26=6x+2 | | 2x2−40x+200=02, | | 02x2−40x+200=02, | | (2x-18)+(x+4)=180 | | 2x+8=3x-25 | | x^2-72=12x | | 455=5x+150 | | 7x+20=9x-14 | | 6/5=10/x+5 | | 5/6-y=30 | | 135=3y+5+2y+7 | | 6(x-4)+3x=2x+3(x-5) | | 2y-3y-2=5+4(3-y) | | 6x+3=2×-7 | | 6x+3=2×+7 | | C=4x10^10 | | C=4x10-10 | | 4+(2m+1)=29 | | x+6=-6+2x | | 7x−8(-7)=-14 | | 4+6x=4x+10 | | w/2=38 | | 10+7x=2x+15 | | 12+w/7=9 | | 80+.80x=50+.90x | | 7/20*5/14=x |