If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=16x=18
We move all terms to the left:
2x^2-(16x)=0
a = 2; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·2·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*2}=\frac{0}{4} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*2}=\frac{32}{4} =8 $
| (2x-14)+(2x-14)=180 | | x14=4035x= | | 1.25/0.25=b | | -35+12x=5(2x+7) | | x=(3x+10)∘ | | ?x?=200 | | 16d+2=10d+20 | | 30x-22=26+42 | | 238=56-x | | (10x+4)+84=180 | | -x+186=12 | | 28=(−y+2)7 | | -3x+8=-33 | | 5(t+6)−4(3t+5)=-11 | | 41+7x-19=-3(2+x-4x) | | ((5x)x(3x))-((x)x(x))=126 | | -3x-7=-33 | | -3x-7=33 | | x^2+25x-264=0 | | -5x/8=-15 | | (5x-10)+135=180 | | 6=k/3 | | j–13=–8 | | 3x=-142 | | (10x+40+84=90 | | 6x2=54x1 | | (10x+40+84=180 | | –9+7n−4=–13+7n | | 20=2(v+4)+4v | | 2a+3=9a-4 | | x+5×4=23 | | -8f+27=2f-13 |