If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-7x+3=0
a = 2; b = -7; c = +3;
Δ = b2-4ac
Δ = -72-4·2·3
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-5}{2*2}=\frac{2}{4} =1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+5}{2*2}=\frac{12}{4} =3 $
| 3.2=-19.2-7y | | 2×-14=12x+3 | | 5(k+1)=6+3k | | x³-19=83 | | 4z-7=5z-1 | | 65=2x+2(x+7.5) | | S=60b+22 | | 4w^2+10w=-6 | | 10x-9+8x+15=180 | | 4c+6=24 | | –13=–2/3x | | 10(y-95)=20 | | -2-x=-2x+5 | | -3x+8=19x-58 | | 3u+15=-3(u+1) | | 6+y/5.12=10 | | -2+2g=2 | | x×29=87 | | 15-1c=84 | | 2u+48=-5(u-4) | | 32=18+7c | | 4q-q=15 | | -10(x-2)+20x=(x+4)-20 | | -75x2+290x=240 | | 7x+8-9x=22 | | x+59+84+51=180 | | 2(125x+55)=805 | | 22=6+8d | | (3b÷7)=(2b÷8) | | 1/10x1/4x=21 | | t=5t^2+10t+40 | | 9/b+34=9 |