If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-6x+2=0
a = 2; b = -6; c = +2;
Δ = b2-4ac
Δ = -62-4·2·2
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{5}}{2*2}=\frac{6-2\sqrt{5}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{5}}{2*2}=\frac{6+2\sqrt{5}}{4} $
| 3/7(y)=9 | | -1/3-6=8-3y | | –3(c+8)=–9 | | 4(x-2)-(2x-4)=7 | | -50+3k=13 | | 11x=22/5 | | 19.64=4.4−4g | | 5+–3y=2 | | –0.18=4d−12.18 | | 0,3x=2,1 | | 0.5x+4=5÷1.2x+8=3 | | x-(x.0,0179)=215,9613 | | 5(x-1)=5x+3-2(-7x-4) | | -5)-x-3)-x+2=1 | | 2(x-3)=3(6-x)+1 | | 2(x+8)=-3x+31 | | 5x-3=14-3x | | 4(u+7)-8u=-12 | | 4(x-8)=-4x+1+8x | | 4(x-8)=-4x+1-8x | | 15-6x=23 | | -2x-9=6x+15=0 | | 7b-7=2b+8 | | 1.785^12t=4 | | n(-1)^n=10 | | 44=t-74 | | -3x-5=1,8+x | | 21/3*11/4=x | | 4(x+1)+9=2(x+3)-5 | | 7-15x=9-3x | | 21/3*61/4=x | | 9x-33=-5x+65 |