If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-5x-18=0
a = 2; b = -5; c = -18;
Δ = b2-4ac
Δ = -52-4·2·(-18)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-13}{2*2}=\frac{-8}{4} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+13}{2*2}=\frac{18}{4} =4+1/2 $
| 6/7x+1/5x=19/35 | | 4x+12-2=6 | | s0.4-4.6=-1.8 | | x/16=9/36 | | 8-2y=37-2 | | 4(x-1)=3(2-2x) | | 38+3x=110+-5x | | |2(x−4)|+7=25 | | 1/3=+a=5/4 | | 130=(2x-18) | | -8-9x=15x+7+3x | | 4/3=11/u | | V(x)=(24-2x)(18-2x) | | 5x+2=135x=11 | | -4+73=93-6x | | -9−5k=-9k+3 | | 4h-7=2(3h+5) | | 7x-21+9=30 | | 7+8n=-3+3n | | 3.0=x/1.0-x | | 2x-20+6x+10=180 | | m-1=3m+4 | | 8x-2(3x+5)=15 | | Y=3.5x+2.3 | | x+15=-4x–18 | | 4(7x+5)=-188 | | 6x-18+2=2 | | 87=3x-15 | | 3(x-7)=-3(2-x) | | 4t=3.5=2.25 | | 3h^2+3h+16=0 | | -7y=-8−3y |