If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(V)=(24-2V)(18-2V)
We move all terms to the left:
(V)-((24-2V)(18-2V))=0
We add all the numbers together, and all the variables
V-((-2V+24)(-2V+18))=0
We multiply parentheses ..
-((+4V^2-36V-48V+432))+V=0
We calculate terms in parentheses: -((+4V^2-36V-48V+432)), so:We add all the numbers together, and all the variables
(+4V^2-36V-48V+432)
We get rid of parentheses
4V^2-36V-48V+432
We add all the numbers together, and all the variables
4V^2-84V+432
Back to the equation:
-(4V^2-84V+432)
V-(4V^2-84V+432)=0
We get rid of parentheses
-4V^2+V+84V-432=0
We add all the numbers together, and all the variables
-4V^2+85V-432=0
a = -4; b = 85; c = -432;
Δ = b2-4ac
Δ = 852-4·(-4)·(-432)
Δ = 313
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(85)-\sqrt{313}}{2*-4}=\frac{-85-\sqrt{313}}{-8} $$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(85)+\sqrt{313}}{2*-4}=\frac{-85+\sqrt{313}}{-8} $
| 5x+2=135x=11 | | -4+73=93-6x | | -9−5k=-9k+3 | | 4h-7=2(3h+5) | | 7x-21+9=30 | | 7+8n=-3+3n | | 3.0=x/1.0-x | | 2x-20+6x+10=180 | | m-1=3m+4 | | 8x-2(3x+5)=15 | | Y=3.5x+2.3 | | x+15=-4x–18 | | 4(7x+5)=-188 | | 6x-18+2=2 | | 87=3x-15 | | 3(x-7)=-3(2-x) | | 4t=3.5=2.25 | | 3h^2+3h+16=0 | | -7y=-8−3y | | 1-3x*7=9x^2-3 | | (3x-5)^2=32 | | 2(4x-8)=2x=26 | | 22.82=4g+3.74 | | 2{4x-8}=2x=26 | | 5(1.5)-y+1.5+2y+6=180 | | -9−5t=1−7t | | -6m=-8m+6 | | (5/x)+45=10x | | 6-(3c+4)=2(c+4)+c | | 3+7w=-4+8w | | 2.6g=17.5 | | 3.4−2.8d=+2.8d−1.3 |