(5/x)+45=10x

Simple and best practice solution for (5/x)+45=10x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/x)+45=10x equation:



(5/x)+45=10x
We move all terms to the left:
(5/x)+45-(10x)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+5/x)-10x+45=0
We add all the numbers together, and all the variables
-10x+(+5/x)+45=0
We get rid of parentheses
-10x+5/x+45=0
We multiply all the terms by the denominator
-10x*x+45*x+5=0
We add all the numbers together, and all the variables
45x-10x*x+5=0
Wy multiply elements
-10x^2+45x+5=0
a = -10; b = 45; c = +5;
Δ = b2-4ac
Δ = 452-4·(-10)·5
Δ = 2225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2225}=\sqrt{25*89}=\sqrt{25}*\sqrt{89}=5\sqrt{89}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-5\sqrt{89}}{2*-10}=\frac{-45-5\sqrt{89}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+5\sqrt{89}}{2*-10}=\frac{-45+5\sqrt{89}}{-20} $

See similar equations:

| 6-(3c+4)=2(c+4)+c | | 3+7w=-4+8w | | 2.6g=17.5 | | 3.4−2.8d=+2.8d−1.3 | | w+33/8=16/8 | | 7(3x-4)=11x-8 | | -18h=-19h−12 | | 1/2(x+5)=-3x-10 | | 15x-4=9x+2 | | 8j=9j−3 | | 9+3(4+2x)=24 | | 11x+16=x-4 | | 10k+-11k=5 | | 2x-2=1/3x^2+1 | | A(n)=6n-16 | | 10b=-8+8b | | 3x=7-5x=x-8 | | 1+9c=7c-7 | | 2n+2(6n+2)=2+2(n-5) | | 8n-3n=2n+39 | | 4v-12=4v+5 | | 5.13(10)2.3^x=400 | | 8/9=3/4k | | 6/x+4=3/2 | | 6x3=25 | | 2X+y=3.9 | | (7a-2)(3a+2)=0 | | 5+7x=-58 | | m^2=172 | | x/20+13x/12=x/16 | | 2(3x-2)=-28 | | 3(2x-6)=4x=8 |

Equations solver categories