If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-50x=0
a = 2; b = -50; c = 0;
Δ = b2-4ac
Δ = -502-4·2·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-50}{2*2}=\frac{0}{4} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+50}{2*2}=\frac{100}{4} =25 $
| 10x+7=-12+139 | | 10=0.17+0.8x | | 19.67+2.5j=-0.5-17.23 | | (47+3x)+(4x+10)=90 | | 3+6(8v+7)=141 | | 3x+15+4x=180 | | 8x+3-2x=8+x+10 | | -64.41=3.8(3.9x+4.5) | | -2-5u=7u+18-13u | | 5x/4=10-5x/8 | | 1=3x+2=3x=180 | | 16.07+0.05(x+3)=16.82-0.09 | | -4(4x-4.5)=114 | | S=A/1+n | | 8c+6=16-2c | | x^2-51=-14x | | 4x-24+4x=20 | | -7w+16=-8w | | y=(5+y)+y | | –14z+–8z−–6z−3z=19 | | 12x-2x+64=12x+40 | | -10+7w=10w+10+10 | | 5x+6=-14x-3 | | 7-5(3m-2)=107 | | 5(x+2)-5=5(x-4) | | n+7=2n | | -10t+7=-5+t+1 | | 93837.38383.28+4x=x | | 3(x=7)/2=19 | | 93837.38383.28+x=x | | (x/3)+(-2)=6 | | n=5(4+3) |