If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20x+40=0
a = 2; b = -20; c = +40;
Δ = b2-4ac
Δ = -202-4·2·40
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{5}}{2*2}=\frac{20-4\sqrt{5}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{5}}{2*2}=\frac{20+4\sqrt{5}}{4} $
| 0.14(y-6)+0.08y=0.6y-1.2 | | 1x+1=2x+0 | | 2y+4=1-2y | | 12n-7=3n+2 | | (x+2)^=64 | | 5(x-2)+3=7x=9 | | -5.8.4x=11.0 | | 4+4y=2y+2 | | V=3r^2r | | k-19= | | Y=1(1.045)^t | | n+4n+3(n+50)+2n-100+5(n+4n)+4(2n-100)=3950 | | 3(x–5)=60 | | 2y(y-9y)(y+4)=0 | | 4y-1y=5 | | Y=(4x-5)/(5x+4) | | -6+5x=17 | | 2n-5=1.5n | | 18+–6c=–12 | | 8v-10v=-32 | | 4=128-8x | | 17+4d=–3 | | 15x+19=2x+66 | | 14x+19=3x+74 | | 5(x+2)2=20 | | 3+3u=2u+10 | | 16k2+40k+25=40 | | 7-6x=56+x | | 9+4x=39+2x | | 9(x+5=-27 | | 9+11x=57-x | | 2y+3=7y-5 |