If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16k^2+40k+25=40
We move all terms to the left:
16k^2+40k+25-(40)=0
We add all the numbers together, and all the variables
16k^2+40k-15=0
a = 16; b = 40; c = -15;
Δ = b2-4ac
Δ = 402-4·16·(-15)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-16\sqrt{10}}{2*16}=\frac{-40-16\sqrt{10}}{32} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+16\sqrt{10}}{2*16}=\frac{-40+16\sqrt{10}}{32} $
| 7-6x=56+x | | 9+4x=39+2x | | 9(x+5=-27 | | 9+11x=57-x | | 2y+3=7y-5 | | 4x+10=6x–8 | | -23+5c(3)-16=3^2-7 | | 3+10x=45-4x | | 6+8x=28-3x | | 5+11x=69+3x | | 4^x-5+8=17 | | -X+3=-5-7x | | 12+x=48-2x | | 90+90+52+x=180 | | 9+2n–3=1/2(4n+6) | | 9+2n–3=12(4n+6) | | 2n+17×2=54 | | 2.3(h-5.3)=0.2(-32.9+h) | | 2(3x-1)+3(x-7)=256 | | 24b=9+5b-2 | | −2+x4=6 | | 9/5m-10=5 | | 4x/15=3/50 | | y/10+7=(-10) | | y/3+6=21 | | 1+7x=13+5x | | 10−3x=40 | | x×3+1=14 | | 4a-19=709 | | -5-7n=-11-6n | | 6x+14=x-6 | | 2X2-4x+20=180 |