If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-12x-13=0
a = 2; b = -12; c = -13;
Δ = b2-4ac
Δ = -122-4·2·(-13)
Δ = 248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{248}=\sqrt{4*62}=\sqrt{4}*\sqrt{62}=2\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{62}}{2*2}=\frac{12-2\sqrt{62}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{62}}{2*2}=\frac{12+2\sqrt{62}}{4} $
| -9x-5-8+x=-21 | | 12=x/4-3 | | 3x-6-(-7x)-4x=-30 | | -9x+3+2x-8=9 | | -x-8x-(-7)=-11 | | -x+2x-3=5 | | -5x+(-5x)=30 | | 6x-8x=22 | | -4x+9x=-35 | | 4x-6=3+12 | | 30=4h+18 | | 2(6x-1)=4(3x-4) | | 12(x+8)=12(12x+4) | | 0.5(6x-4)=3(x-2/3) | | 10+3k=13 | | 2(5)+3k=13 | | 180=-v+270 | | 9x-5/4=2x | | 15-(4m-5)=31 | | X-2x+8/3=1/4(x-2-x)/6 | | (8x-5)=(3x+11)+(2x+20) | | -u+72=226 | | 6x-5=-40=9x | | ⅔w=5/6 | | 5x+2+2=3x+9+1= | | 34-4x=7=7x | | 3g+4g+4=25 | | (8x-5)=(3x+11)(2x+20) | | 4(m-2)=40 | | (m-2)=40 | | 5x+2+2=0 | | -2y+1=3y+11 |