If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(8x-5)=(3x+11)(2x+20)
We move all terms to the left:
(8x-5)-((3x+11)(2x+20))=0
We get rid of parentheses
8x-((3x+11)(2x+20))-5=0
We multiply parentheses ..
-((+6x^2+60x+22x+220))+8x-5=0
We calculate terms in parentheses: -((+6x^2+60x+22x+220)), so:We add all the numbers together, and all the variables
(+6x^2+60x+22x+220)
We get rid of parentheses
6x^2+60x+22x+220
We add all the numbers together, and all the variables
6x^2+82x+220
Back to the equation:
-(6x^2+82x+220)
8x-(6x^2+82x+220)-5=0
We get rid of parentheses
-6x^2+8x-82x-220-5=0
We add all the numbers together, and all the variables
-6x^2-74x-225=0
a = -6; b = -74; c = -225;
Δ = b2-4ac
Δ = -742-4·(-6)·(-225)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-74)-2\sqrt{19}}{2*-6}=\frac{74-2\sqrt{19}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-74)+2\sqrt{19}}{2*-6}=\frac{74+2\sqrt{19}}{-12} $
| 4(m-2)=40 | | (m-2)=40 | | 5x+2+2=0 | | -2y+1=3y+11 | | 3x3+5x2=0 | | 7x-6=3(4-x) | | -2(2+3y)=2(-15-7y) | | (23x+38)+(27x+42)=180 | | 9x-3=11x+9= | | -4x+8=-3x+2= | | x^2+8x+16=20- | | (23x+38)°+(27x+42)°=180° | | -5m^2-3=127 | | 17-4(x-5)=3 | | (9^3x)18^-2=81 | | 2x+x/2=24 | | x^2+x−56=0 | | x^2=√20+√20+√20+ | | w2+10w+21=0 | | 50=x-9 | | Y=16t2+48t+4 | | 5m=m^2 | | 5m=m2 | | x=0.13(120000-x) | | 5x+6-2=29 | | 7(p-1)=14 | | 164=83-x | | 8+4/7x=24 | | 16=4-3n-n | | 2/3=1=2x/3 | | x^{2}+(x+2)^{2}=580 | | 5x/6=-3/2+x/5 |