If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w2+10w+21=0
We add all the numbers together, and all the variables
w^2+10w+21=0
a = 1; b = 10; c = +21;
Δ = b2-4ac
Δ = 102-4·1·21
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4}{2*1}=\frac{-14}{2} =-7 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4}{2*1}=\frac{-6}{2} =-3 $
| 50=x-9 | | Y=16t2+48t+4 | | 5m=m^2 | | 5m=m2 | | x=0.13(120000-x) | | 5x+6-2=29 | | 7(p-1)=14 | | 164=83-x | | 8+4/7x=24 | | 16=4-3n-n | | 2/3=1=2x/3 | | x^{2}+(x+2)^{2}=580 | | 5x/6=-3/2+x/5 | | 7x/8-10=25 | | -12=3n+2n-2 | | 7x8-10=25 | | 8=5-n-2n | | 2(2C–4)=3(C+1)4x-8=3x+3 | | -2x+5=-x-9 | | 2(2x–4)=3(x+1) | | 4n+4+n=9 | | y-20=3y+2 | | 5+4n+n=-15 | | 5x+7(3x+2)=6(4x+1 | | 3a+5+2a-15=180 | | 4^n+1=512+2^2n+1 | | 4n+1=512+2n+1 | | 3x-2+4x=8+4 | | -1/5+x/4=-x+3x/2 | | 1/5x+2=-8 | | 3+8x=31 | | .25(y-4)+0.06y=0.21y-0.05(80) |