If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x=1
We move all terms to the left:
2x^2+3x-(1)=0
a = 2; b = 3; c = -1;
Δ = b2-4ac
Δ = 32-4·2·(-1)
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{17}}{2*2}=\frac{-3-\sqrt{17}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{17}}{2*2}=\frac{-3+\sqrt{17}}{4} $
| 24/10x-2x=3/10 | | -6n-2=-5n-9 | | 0.100x340=10x3400 | | 12=5^x | | 24/10x-2x=3/1 | | 8x+5=(7x+12) | | H=-0.19d2+3.7d+10 | | 2c+10=10c+1-5c | | 60x=70 | | -9-7w=-4w-3 | | y=(-8.61)(0.48) | | 16-2(t)=3/2(t)+9 | | -2(8m+8)=-6 | | 2s=10+3s | | 1.8+7n=7.9-4n | | 14-2x=7x-4 | | 30-x+6x+7=90 | | -3v-5=-v+1 | | 3x+3x=25 | | (5x+13)+(x+23)=180 | | -8+3x=80-8x | | 20+6x-12-3x=180 | | 6(3n+1)-3(1+2n)=n+2n | | −16t^2+54t−18=0 | | 6m+10=-5-9m | | (8x+13)+(12x+7)=180 | | 6-7x=-4x-15 | | 8x-45+15=180 | | 4-5j-9=-6j-7 | | 12.6+4(m)=9.6+8(m) | | 25k-12=-13 | | 3x-65=8x+60 |