16-2(t)=3/2(t)+9

Simple and best practice solution for 16-2(t)=3/2(t)+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16-2(t)=3/2(t)+9 equation:



16-2(t)=3/2(t)+9
We move all terms to the left:
16-2(t)-(3/2(t)+9)=0
Domain of the equation: 2t+9)!=0
t∈R
We get rid of parentheses
-2t-3/2t-9+16=0
We multiply all the terms by the denominator
-2t*2t-9*2t+16*2t-3=0
Wy multiply elements
-4t^2-18t+32t-3=0
We add all the numbers together, and all the variables
-4t^2+14t-3=0
a = -4; b = 14; c = -3;
Δ = b2-4ac
Δ = 142-4·(-4)·(-3)
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{37}}{2*-4}=\frac{-14-2\sqrt{37}}{-8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{37}}{2*-4}=\frac{-14+2\sqrt{37}}{-8} $

See similar equations:

| -2(8m+8)=-6 | | 2s=10+3s | | 1.8+7n=7.9-4n | | 14-2x=7x-4 | | 30-x+6x+7=90 | | -3v-5=-v+1 | | 3x+3x=25 | | (5x+13)+(x+23)=180 | | -8+3x=80-8x | | 20+6x-12-3x=180 | | 6(3n+1)-3(1+2n)=n+2n | | −16t^2+54t−18=0 | | 6m+10=-5-9m | | (8x+13)+(12x+7)=180 | | 6-7x=-4x-15 | | 8x-45+15=180 | | 4-5j-9=-6j-7 | | 12.6+4(m)=9.6+8(m) | | 25k-12=-13 | | 3x-65=8x+60 | | -10+2g=4g | | 13x-75=38-6x | | y=-4y-5 | | 4x+7+3x-12=90 | | (3x+10)+(3x+2)=180 | | -f+2+4(f)=8-3(f) | | 6-3j=-6j | | 8x+5x-75=38-6x | | 21(c-51)=19,950 | | -2y-10=-6y+10 | | 6−3j=-6j | | (9x-10)+(2x+8)=180 |

Equations solver categories