If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x-4=0
a = 2; b = 20; c = -4;
Δ = b2-4ac
Δ = 202-4·2·(-4)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-12\sqrt{3}}{2*2}=\frac{-20-12\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+12\sqrt{3}}{2*2}=\frac{-20+12\sqrt{3}}{4} $
| x4-6x2=-8 | | -19a–-6a–6=7 | | 2x-0.67(4x-12)=x+7 | | 3k+4k-6=15 | | -2(y-6)=-7y-3 | | 9x^2+21x-120=0 | | -2=-4/b | | 24=-7y+5(y+2) | | -3(5n-1)=13-15n | | 5=2+3r-6 | | 45/5b=100 | | u+15=10 | | 5+4b=100 | | 3(r)=25-3r | | w-21=-11 | | -1x-10=-20 | | 18=9(x=8) | | 6k-8=4k | | 0.5(1-x)(1-2x)=0 | | 5+-4b=45 | | -3x2+2x-3=0 | | 2m=6-4 | | 45=15-6x | | -2x2-20x-32=0 | | 3(n-5)=3n-18 | | 5+6k=5+k | | 4|5-t|=20 | | w-21=-21 | | 7x-3x-18=6 | | 8/9x=4/5 | | 5(3y+2)=-28 | | 8m/12=7/8 |