2x+3x(x-4)=4(2x+3)

Simple and best practice solution for 2x+3x(x-4)=4(2x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x+3x(x-4)=4(2x+3) equation:



2x+3x(x-4)=4(2x+3)
We move all terms to the left:
2x+3x(x-4)-(4(2x+3))=0
We multiply parentheses
3x^2+2x-12x-(4(2x+3))=0
We calculate terms in parentheses: -(4(2x+3)), so:
4(2x+3)
We multiply parentheses
8x+12
Back to the equation:
-(8x+12)
We add all the numbers together, and all the variables
3x^2-10x-(8x+12)=0
We get rid of parentheses
3x^2-10x-8x-12=0
We add all the numbers together, and all the variables
3x^2-18x-12=0
a = 3; b = -18; c = -12;
Δ = b2-4ac
Δ = -182-4·3·(-12)
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{13}}{2*3}=\frac{18-6\sqrt{13}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{13}}{2*3}=\frac{18+6\sqrt{13}}{6} $

See similar equations:

| -8(2k−4)=–16k | | 75x-20=5x | | (3/(x^2))+(4/x)=5 | | 2(x+3)-2=5(x-2)+2 | | 2+x=-2+3 | | 3(x+2)+4(2x+1)=6+20 | | x+3+2x-5=360 | | –8(2k−4)=–16k | | 4-3(k-8)-(k+5)=23 | | 18=3(w+4) | | -8(13v-5)+10v=8(12v-8) | | 2x²-32x-34=0 | | 3^2x+1-81=0 | | 14n=5 | | 3(r-15)+1=4 | | (2x+3)^2=(2x+3)(2x+3) | | 2n+3/5=n/2+5 | | 625+2500=c2 | | 7p-8=0 | | 22x3+14x2=−10x2+3x+7 | | -3x-8=-50 | | 3.5t-4.5=2.5 | | 4x-7=2x+37 | | -7q=29 | | 700-x30=200+x20 | | 15x²+x-1=0 | | -2/m-3=-5 | | s=5000+60000 | | 20h-8=112 | | 5.05=-10.1x | | -2u^2-u+12=~3u^2+6u | | 2x-1+6=25-5.5x |

Equations solver categories