If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x+11/2x-20=10+1/2x
We move all terms to the left:
2x+11/2x-20-(10+1/2x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 2x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
2x+11/2x-(1/2x+10)-20=0
We get rid of parentheses
2x+11/2x-1/2x-10-20=0
We multiply all the terms by the denominator
2x*2x-10*2x-20*2x+11-1=0
We add all the numbers together, and all the variables
2x*2x-10*2x-20*2x+10=0
Wy multiply elements
4x^2-20x-40x+10=0
We add all the numbers together, and all the variables
4x^2-60x+10=0
a = 4; b = -60; c = +10;
Δ = b2-4ac
Δ = -602-4·4·10
Δ = 3440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3440}=\sqrt{16*215}=\sqrt{16}*\sqrt{215}=4\sqrt{215}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-4\sqrt{215}}{2*4}=\frac{60-4\sqrt{215}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+4\sqrt{215}}{2*4}=\frac{60+4\sqrt{215}}{8} $
| 4n=45+15 | | 5t-20t-25=0 | | 6(5p+7)=132 | | -2−3k=-4k | | 4x^2+17x=8 | | 3x+15+2x+15=180 | | (2+7x)/(11x-17)=14 | | 8m-5=7m | | 3x=15=2x=15+180 | | 4/5x-2=5 | | 4x^2+28x=-45 | | 363=3d2 | | −1x−3+3x=5 | | 5(x−1)=20 | | 13/40=x/7 | | m/9+47=74 | | 1x+21+1x+61+(X+23)=180 | | 3/(5x+2)=17 | | 4x+2x=x+12 | | 3g-1=18 | | z-21=16 | | 10x-3=7x+18 | | 7n-7=11 | | 5(m-2)=(m-1) | | 2x/7=x/9+6 | | 16x^2+9x^2=22^2 | | 2x3-54=2(x3-27) | | X+X+43+(x-31)=180 | | 2x+7=6x-3 | | -13=5(1+4m)–2m | | 16x2+12x-31=0 | | 5x+19=4/3x+24 |