If it's not what You are looking for type in the equation solver your own equation and let us solve it.
363=3d^2
We move all terms to the left:
363-(3d^2)=0
a = -3; b = 0; c = +363;
Δ = b2-4ac
Δ = 02-4·(-3)·363
Δ = 4356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4356}=66$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-66}{2*-3}=\frac{-66}{-6} =+11 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+66}{2*-3}=\frac{66}{-6} =-11 $
| −1x−3+3x=5 | | 5(x−1)=20 | | 13/40=x/7 | | m/9+47=74 | | 1x+21+1x+61+(X+23)=180 | | 3/(5x+2)=17 | | 4x+2x=x+12 | | 3g-1=18 | | z-21=16 | | 10x-3=7x+18 | | 7n-7=11 | | 5(m-2)=(m-1) | | 2x/7=x/9+6 | | 16x^2+9x^2=22^2 | | 2x3-54=2(x3-27) | | X+X+43+(x-31)=180 | | 2x+7=6x-3 | | -13=5(1+4m)–2m | | 16x2+12x-31=0 | | 5x+19=4/3x+24 | | -4(9y/2-25/2)-9=-23 | | 18-6x-6=18-6x | | (2x-8)24=(x+8)45 | | -9/6x=24 | | 8=16x+131 | | 12-a=-24 | | -39+5r=-4(-4+2r)+2r | | 2x-8/x+8=45/24 | | x-113/5=9.22 | | f(-2)=-5 | | 3y+(-8)=-23 | | -23+b=-6+6(3+6b) |