If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+12x-31=0
a = 16; b = 12; c = -31;
Δ = b2-4ac
Δ = 122-4·16·(-31)
Δ = 2128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2128}=\sqrt{16*133}=\sqrt{16}*\sqrt{133}=4\sqrt{133}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{133}}{2*16}=\frac{-12-4\sqrt{133}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{133}}{2*16}=\frac{-12+4\sqrt{133}}{32} $
| 5x+19=4/3x+24 | | -4(9y/2-25/2)-9=-23 | | 18-6x-6=18-6x | | (2x-8)24=(x+8)45 | | -9/6x=24 | | 8=16x+131 | | 12-a=-24 | | -39+5r=-4(-4+2r)+2r | | 2x-8/x+8=45/24 | | x-113/5=9.22 | | f(-2)=-5 | | 3y+(-8)=-23 | | -23+b=-6+6(3+6b) | | 9n-81=864 | | 9n−81=864 | | 8(-1+m)+3=2(m-5*1*2) | | 3•(x-1)=2•(x+3)-2x | | 5|2x+6|-13=3 | | 3-4=2(x+3) | | 2*3(n-6)=5n-43 | | 5x+5=2x-28 | | f-33/7=2/3 | | -4•(x+)=x+22 | | 0.6=0.3x | | 3z+9+7z+3+5z-27=180 | | 3(x-6)=-8.7 | | 4^x=1.6 | | q-25=-11 | | 4(a+9)=38.8 | | 1.086(35-x)=1.07(45-2x) | | X+x+x+1+2=228 | | (5/6x+3/4)=2/5 |