If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x*x+6x-95=0
We add all the numbers together, and all the variables
6x+2x*x-95=0
Wy multiply elements
2x^2+6x-95=0
a = 2; b = 6; c = -95;
Δ = b2-4ac
Δ = 62-4·2·(-95)
Δ = 796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{796}=\sqrt{4*199}=\sqrt{4}*\sqrt{199}=2\sqrt{199}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{199}}{2*2}=\frac{-6-2\sqrt{199}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{199}}{2*2}=\frac{-6+2\sqrt{199}}{4} $
| XxX=4095 | | 2x^2+7x+x=0 | | XxX=495 | | 2(x=4)=-6 | | 2x+4x+9x=90 | | 5n+8=24 | | 5*(3y+4)=-4*(6-4y) | | 10/x=23 | | x+2/5-1=-8 | | |2x-6|=15 | | 5(1-2x)=1+3(6x-8 | | y/2.4+1.7=2.8 | | 180=2x+x+50 | | c-22=24 | | -3+3x+2x=4x+1 | | 4n+2=6(31n-32) | | 4k+10=7 | | 8t2=16106 | | (3x)(2x)=2025 | | 5x+x=2+5x | | 7-3k+2k=1-4k | | 100–7x=13x | | 6n+15=6 | | 1+2x=-3+4x | | 6z+8=13z-7 | | 8z+8=13z-7 | | 7z+8=12z-7 | | 4-9v=9+v | | 5x-5x=8+4x | | 6z+8=11z–7 | | 4-9v=8+v | | 6n+20=6 |