If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8t^2=16106
We move all terms to the left:
8t^2-(16106)=0
a = 8; b = 0; c = -16106;
Δ = b2-4ac
Δ = 02-4·8·(-16106)
Δ = 515392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{515392}=\sqrt{64*8053}=\sqrt{64}*\sqrt{8053}=8\sqrt{8053}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{8053}}{2*8}=\frac{0-8\sqrt{8053}}{16} =-\frac{8\sqrt{8053}}{16} =-\frac{\sqrt{8053}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{8053}}{2*8}=\frac{0+8\sqrt{8053}}{16} =\frac{8\sqrt{8053}}{16} =\frac{\sqrt{8053}}{2} $
| (3x)(2x)=2025 | | 5x+x=2+5x | | 7-3k+2k=1-4k | | 100–7x=13x | | 6n+15=6 | | 1+2x=-3+4x | | 6z+8=13z-7 | | 8z+8=13z-7 | | 7z+8=12z-7 | | 4-9v=9+v | | 5x-5x=8+4x | | 6z+8=11z–7 | | 4-9v=8+v | | 6n+20=6 | | 12x2+7x–10=0 | | n-5=5n-1 | | 1.50(6)+2.00=1.80(x-6) | | 5x-20+2x+5=180 | | 13x-11(3)=7 | | n/6n+20=6 | | 13y=293-16 | | 2k-1+1=3+5k | | 6n+10=6 | | -7-3=-8+5p | | 20-3(x+1)=14 | | 43+5x=-7 | | 4v-4v=-10-2v | | (7+6)(5u+6)=0 | | 4s+7=7 | | 4s=7=7 | | X+7+4x+8=5 | | 12x+86=11x-5 |