If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(x+51)=90
We move all terms to the left:
2x(x+51)-(90)=0
We multiply parentheses
2x^2+102x-90=0
a = 2; b = 102; c = -90;
Δ = b2-4ac
Δ = 1022-4·2·(-90)
Δ = 11124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11124}=\sqrt{36*309}=\sqrt{36}*\sqrt{309}=6\sqrt{309}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(102)-6\sqrt{309}}{2*2}=\frac{-102-6\sqrt{309}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(102)+6\sqrt{309}}{2*2}=\frac{-102+6\sqrt{309}}{4} $
| 136=17d | | 3v=6v-36 | | 60c-68+23c=c+81 | | -2=x+5/8 | | 13c-100+3c=c+100 | | u+28+35=3u+6 | | 17b-b2=60 | | b-29+2b=b+46 | | b-29+b=b+46 | | y/2+1=2y)5-3/2 | | y=57.14(9)+28.57=257.13 | | y=6900(.825+1)^26 | | y=6900(.825-1)^26 | | 100^1.05=x | | 15n=8+5 | | n=200/((4200/n)-(250/50)) | | 0.6^n=-400 | | 4=-(2x+4) | | Y=80-2y | | -2n+(-8)=0 | | 12x2-56x+40=0 | | 2/3x-x+5=0 | | x^2+961=0 | | 63=6x+3(3x-4) | | -16t^2+0T+700=-16t^2+700 | | 8/3=1/3f | | 11.4+.5x=9.9+.6 | | 4-t/7=t | | 3a-2a/4=5 | | 2+3.50x=3.25x | | 3y+4y=360 | | 3(2c-7)=4c-39 |