2x(5x+9)=4(6x+10)

Simple and best practice solution for 2x(5x+9)=4(6x+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(5x+9)=4(6x+10) equation:



2x(5x+9)=4(6x+10)
We move all terms to the left:
2x(5x+9)-(4(6x+10))=0
We multiply parentheses
10x^2+18x-(4(6x+10))=0
We calculate terms in parentheses: -(4(6x+10)), so:
4(6x+10)
We multiply parentheses
24x+40
Back to the equation:
-(24x+40)
We get rid of parentheses
10x^2+18x-24x-40=0
We add all the numbers together, and all the variables
10x^2-6x-40=0
a = 10; b = -6; c = -40;
Δ = b2-4ac
Δ = -62-4·10·(-40)
Δ = 1636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1636}=\sqrt{4*409}=\sqrt{4}*\sqrt{409}=2\sqrt{409}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{409}}{2*10}=\frac{6-2\sqrt{409}}{20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{409}}{2*10}=\frac{6+2\sqrt{409}}{20} $

See similar equations:

| 2x+11+1x+22=219 | | -7j—-j=18 | | x^2+0.18x-0.11=0 | | 1x-117+38=293 | | x^2+018x-0.11=0 | | 5/8(y+3)=40 | | 5x+4x+5+22=180 | | 0=16(x^2-2.5x+1.5625) | | 4x+51=11x+7 | | 903=s+41 | | 1x-114+1x+2x=35 | | ]5n+7n+5=12n+5 | | 2y=5-17 | | 7n+12=1/4(14+24) | | (11x-5)+(9x-3)+48=180 | | -18v+3=-16v+19 | | 1×-1=b | | 8(t+2)-3)t-4)=6(t-7)+8 | | 9m=9m | | -2(j-8)+-7=-1 | | 63+m=129 | | x=13/22 | | -20=5(-3h-1) | | 0.5x−18≥−=14 | | (5x+2)+(6x)+134=180 | | 4p=2.40 | | -20=5(-3h-1 | | 5x+8+6x+8-82=180 | | 13=22x=3000 | | -7h-14=-5h | | 5x+3+1x-32=35 | | -19+8b=11b+20 |

Equations solver categories