If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+5t-3=0
a = 2; b = 5; c = -3;
Δ = b2-4ac
Δ = 52-4·2·(-3)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-7}{2*2}=\frac{-12}{4} =-3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+7}{2*2}=\frac{2}{4} =1/2 $
| -0.7(0.3x-0.8=-4.48 | | (4x+19)=115 | | Y=5x-4=20 | | Y=5x-4=-20 | | -24+2x=-6(5x+4) | | 2x+6÷-2=18 | | d/18+3=3d/54+22 | | 5c+4(c-1)=2+5(c+2 | | .8x-6.2=0.2 | | 4(4x+4)=16x-6 | | (5x+3)+33=180 | | 2(9-3x)=-6x+18 | | 4y-9=5y-4 | | 2c+6÷-2=18 | | k/100+11=k/100+10 | | -7x+3=8-7x | | (2x+3)(x-5)/x-1=0 | | 5a+3a=52 | | 4(2f+1)=2(f-13) | | 4y/7=2y/3 | | 22-(4x-2)=2x+3 | | 21x-3x=29 | | 4-(y+1)=3(y+1)-4(1-y) | | 5x-21+-7x+3=180 | | 99x-11=11(9x-1) | | 2(-2+12k)=4(6k-1) | | a+3/5=-2 | | 10y+12=2(5y+6) | | (2x+1)+81=180 | | 2x-5=2x-35=180 | | 1=x^2-6x+9/x^2+4x+4 | | 3x+6-3x+15=7 |