294.90+460.00+x+(294.90+460.00+x)x.07=1057.

Simple and best practice solution for 294.90+460.00+x+(294.90+460.00+x)x.07=1057. equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 294.90+460.00+x+(294.90+460.00+x)x.07=1057. equation:



294.90+460.00+x+(294.90+460.00+x)x.07=1057.
We move all terms to the left:
294.90+460.00+x+(294.90+460.00+x)x.07-(1057.)=0
We add all the numbers together, and all the variables
x+(x+754.9)x.07+294.90+460.00-1057=0
We add all the numbers together, and all the variables
x+(x+754.9)x.07-302.1=0
We multiply parentheses
x^2+x+754.9x-302.1=0
We add all the numbers together, and all the variables
x^2+755.9x-302.1=0
a = 1; b = 755.9; c = -302.1;
Δ = b2-4ac
Δ = 755.92-4·1·(-302.1)
Δ = 572593.21
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(755.9)-\sqrt{572593.21}}{2*1}=\frac{-755.9-\sqrt{572593.21}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(755.9)+\sqrt{572593.21}}{2*1}=\frac{-755.9+\sqrt{572593.21}}{2} $

See similar equations:

| (3x-5)*(3x-5)=0 | | -4x+6=2x+-12 | | x+.07x=302.10 | | 8y-3(4-2y)=3(y+3)+1 | | 3x-2(4x+5)=-15-30 | | 3x-2(4x+5=-15x-30 | | 27/100=4=x | | 2.5x=(x+1020000)*1.15 | | 8a-8=2a+16 | | 2.5x=x+1.3 | | -6y+15=27 | | (n-7)/4+(n+1)/5=7/10 | | 4(3x-2)-2(2x-3)=72 | | 4/7(21/8x+1/2(=-2(1/7-5/28x) | | 0.571(2.625x+0.5)=-2(0.143-0.179x) | | x-1.1=4.1 | | x-1.3=2.9 | | 2x+x=16.50 | | 4x+7=16+8x | | 12=q-46 | | 0.75x+3.25=19.75 | | x+x+12+12=x+x-2+2+16+16 | | 5x+-4=6x+4 | | x+(0.04x)=3500 | | 0.83333333333x-0.83333333333=9 | | 5/6x-5/6=9 | | 3x²+6x+12=0 | | x^2-18x=51 | | x^2-18x+58=-7 | | 3÷4a-72=108 | | n2-18n+38=6 | | 5x/9=7/7 |

Equations solver categories