If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+48x=0
a = 24; b = 48; c = 0;
Δ = b2-4ac
Δ = 482-4·24·0
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-48}{2*24}=\frac{-96}{48} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+48}{2*24}=\frac{0}{48} =0 $
| 4+64n2=0 | | 1000^(1-2x)=100 | | 2x-(128)/(x^2)=-6 | | 2y=96 | | X-7+2x=0 | | 30+3x=33 | | 2x–3=4(x–5) | | 9-x/3=0 | | 5^x+1-5^x-3=120 | | x=-75+300 | | y=60+2X-0.5X^2 | | (x2-4)(x2-36)=0 | | 4x(x-3)+2x=27 | | 2x2-2x-84=0 | | 5/3x=4/3+2 | | w/3=12 | | x(3x+4)=30 | | 4x=16-4 | | 3(d-7)=d+9 | | x-3(x-1)=-6-x | | -3x^2=-18-15x | | 44-4x^2=0 | | 4(2x+1)-8=12 | | 0=-6x+42 | | 0=7x-35 | | 8-5x=2x-(4-x) | | 3d+76=42 | | 3(-x+9)=-1/2x+2 | | y=(-11/8)0^3 | | p=2(20+4) | | 2-6x=5-5(x-1 | | 〖120〗^3/〖4x20.07x(7.51)〗^3=x344.33 |