If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(3x+4)=30
We move all terms to the left:
x(3x+4)-(30)=0
We multiply parentheses
3x^2+4x-30=0
a = 3; b = 4; c = -30;
Δ = b2-4ac
Δ = 42-4·3·(-30)
Δ = 376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{376}=\sqrt{4*94}=\sqrt{4}*\sqrt{94}=2\sqrt{94}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{94}}{2*3}=\frac{-4-2\sqrt{94}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{94}}{2*3}=\frac{-4+2\sqrt{94}}{6} $
| 4x=16-4 | | 3(d-7)=d+9 | | x-3(x-1)=-6-x | | -3x^2=-18-15x | | 44-4x^2=0 | | 4(2x+1)-8=12 | | 0=-6x+42 | | 0=7x-35 | | 8-5x=2x-(4-x) | | 3d+76=42 | | 3(-x+9)=-1/2x+2 | | y=(-11/8)0^3 | | p=2(20+4) | | 2-6x=5-5(x-1 | | 〖120〗^3/〖4x20.07x(7.51)〗^3=x344.33 | | 6x+2=3x+ | | 3(7)+1/2(x)=-5 | | -0.3t^2+3t=6.2 | | 3(7)+(1/2)x=-5 | | 3(7)+1/2x=-5 | | 12=-x+8 | | 3(7)+1/2y=-5 | | 16-8x^2=0 | | 0.3^x=0.8^x+2 | | x(x+1)-(2x+1)=-x+1 | | 5x-(4x+4)=-4(-x-1) | | x-5=3-15 | | 6x–(2x+1)=11 | | (4v−2)^2=9 | | xx+7+5x−6=−11x+19x2+x−42 | | 5+3t=6+2t | | X=12p-48 |