3(-x+9)=-1/2x+2

Simple and best practice solution for 3(-x+9)=-1/2x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(-x+9)=-1/2x+2 equation:



3(-x+9)=-1/2x+2
We move all terms to the left:
3(-x+9)-(-1/2x+2)=0
Domain of the equation: 2x+2)!=0
x∈R
We add all the numbers together, and all the variables
3(-1x+9)-(-1/2x+2)=0
We multiply parentheses
-3x-(-1/2x+2)+27=0
We get rid of parentheses
-3x+1/2x-2+27=0
We multiply all the terms by the denominator
-3x*2x-2*2x+27*2x+1=0
Wy multiply elements
-6x^2-4x+54x+1=0
We add all the numbers together, and all the variables
-6x^2+50x+1=0
a = -6; b = 50; c = +1;
Δ = b2-4ac
Δ = 502-4·(-6)·1
Δ = 2524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2524}=\sqrt{4*631}=\sqrt{4}*\sqrt{631}=2\sqrt{631}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-2\sqrt{631}}{2*-6}=\frac{-50-2\sqrt{631}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+2\sqrt{631}}{2*-6}=\frac{-50+2\sqrt{631}}{-12} $

See similar equations:

| y=(-11/8)0^3 | | p=2(20+4) | | 2-6x=5-5(x-1 | | 〖120〗^3/〖4x20.07x(7.51)〗^3=x344.33 | | 6x+2=3x+ | | 3(7)+1/2(x)=-5 | | -0.3t^2+3t=6.2 | | 3(7)+(1/2)x=-5 | | 3(7)+1/2x=-5 | | 12=-x+8 | | 3(7)+1/2y=-5 | | 16-8x^2=0 | | 0.3^x=0.8^x+2 | | x(x+1)-(2x+1)=-x+1 | | 5x-(4x+4)=-4(-x-1) | | x-5=3-15 | | 6x–(2x+1)=11 | | (4v−2)^2=9 | | xx+7+5x−6=−11x+19x2+x−42 | | 5+3t=6+2t | | X=12p-48 | | −3x2−12x+36=0 | | v2+47v=0 | | 3=1/t+2+2/(t+2)^2 | | 4(7x+5)2+2=38 | | 1÷6x+4=15 | | 15^(x+6)=14^(6x) | | 15^x+6=14^6x | | (6+2i)/(1-i)=0 | | 2-6x=5-5(-1) | | 4x*2x=20 | | 2x+20°=3x |

Equations solver categories