If it's not what You are looking for type in the equation solver your own equation and let us solve it.
22z+5z^2=15
We move all terms to the left:
22z+5z^2-(15)=0
a = 5; b = 22; c = -15;
Δ = b2-4ac
Δ = 222-4·5·(-15)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-28}{2*5}=\frac{-50}{10} =-5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+28}{2*5}=\frac{6}{10} =3/5 $
| πr^2-πr^2÷2^2=3π | | 5x^-40=5 | | -3+-7x=18 | | -38+8x=-3x-3(1-6x) | | 8x^2-64x+256=0 | | 2y/2=10 | | 4(4x-5)-8x=12 | | 3x^2-20+1=0 | | 12=-8-4x | | x-(x*0.14)=1000000 | | -2+x/7=3 | | x-(x*0.14)=10000 | | 7^-4x=15 | | 2(t-1)-3(2t-1)=3-5(4t+1) | | 3x^-42=0 | | 4x^2+17=15 | | T-(5t-3)=19 | | -2+x=-8-(3-4x) | | 4x+18=3x+22 | | 2(t-1)-3(4t-7)=22-6(5t+4) | | -39+5k=4+5(k-8) | | -7(v+1)=-7-7v | | 12x=160 | | x^-144=0 | | 15+7x=5x+7x | | 2x+5=-2x+17 | | 6x+6+3x-9=78 | | -9=4-(5+b) | | 4x+19=x-5 | | X+1/3=1-x+2/7 | | 13=1-(-3x) | | 64=x*2/4 |