22-(3/2a+1)=2a

Simple and best practice solution for 22-(3/2a+1)=2a equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 22-(3/2a+1)=2a equation:



22-(3/2a+1)=2a
We move all terms to the left:
22-(3/2a+1)-(2a)=0
Domain of the equation: 2a+1)!=0
a∈R
We add all the numbers together, and all the variables
-2a-(3/2a+1)+22=0
We get rid of parentheses
-2a-3/2a-1+22=0
We multiply all the terms by the denominator
-2a*2a-1*2a+22*2a-3=0
Wy multiply elements
-4a^2-2a+44a-3=0
We add all the numbers together, and all the variables
-4a^2+42a-3=0
a = -4; b = 42; c = -3;
Δ = b2-4ac
Δ = 422-4·(-4)·(-3)
Δ = 1716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1716}=\sqrt{4*429}=\sqrt{4}*\sqrt{429}=2\sqrt{429}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{429}}{2*-4}=\frac{-42-2\sqrt{429}}{-8} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{429}}{2*-4}=\frac{-42+2\sqrt{429}}{-8} $

See similar equations:

| -3/2(x-2)=45/14 | | 3/2x+11/4=13/3 | | X^3+10x^2-48x=0 | | 29=−7t−6 | | 5(c-12)=-55 | | 3/2x+11/4=13/2 | | 3x-15-5x=-25+6x | | 2(2x+3)+5(x+1)=8 | | 19=x^2+2x+4 | | 5x+(3x-1)=6x-11 | | -11+a/15=-13 | | v-6/2=-4 | | 3x=(-5(7-4x)+5)/3 | | 2(3x+5)=24-2x | | 4/t=13/10 | | -1+14p=-435 | | 3x=-(5(7-4x)+6)/5 | | (7y/3y+9)+(4y-18/2y+6)=(3y-13/y+3) | | (〖15x〗^3-5x^2)=÷(5x) | | 6-x=20=4x-4 | | Y=-2x-56 | | 7x+6=8.7 | | 7x+6=2.3 | | 7x+6=2.6 | | 7x+6=1.5 | | 7x+6=0.3 | | 7x+6=0.2 | | 7x+6=0.6 | | 0.9•6x+9=(7+7) | | 0.9•5x+6=6+7 | | -6y+4=-6-y | | 64=4p(16/p) |

Equations solver categories