3x=-(5(7-4x)+6)/5

Simple and best practice solution for 3x=-(5(7-4x)+6)/5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x=-(5(7-4x)+6)/5 equation:



3x=-(5(7-4x)+6)/5
We move all terms to the left:
3x-(-(5(7-4x)+6)/5)=0
We add all the numbers together, and all the variables
3x-(-(5(-4x+7)+6)/5)=0
We multiply all the terms by the denominator
3x*5)-(-(5(-4x+7)+6)=0
We calculate terms in parentheses: -(5(-4x+7)+6), so:
5(-4x+7)+6
We multiply parentheses
-20x+35+6
We add all the numbers together, and all the variables
-20x+41
Back to the equation:
-(-20x+41)
Wy multiply elements
15x^2-(-20x+41)=0
We get rid of parentheses
15x^2+20x-41=0
a = 15; b = 20; c = -41;
Δ = b2-4ac
Δ = 202-4·15·(-41)
Δ = 2860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2860}=\sqrt{4*715}=\sqrt{4}*\sqrt{715}=2\sqrt{715}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{715}}{2*15}=\frac{-20-2\sqrt{715}}{30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{715}}{2*15}=\frac{-20+2\sqrt{715}}{30} $

See similar equations:

| (7y/3y+9)+(4y-18/2y+6)=(3y-13/y+3) | | (〖15x〗^3-5x^2)=÷(5x) | | 6-x=20=4x-4 | | Y=-2x-56 | | 7x+6=8.7 | | 7x+6=2.3 | | 7x+6=2.6 | | 7x+6=1.5 | | 7x+6=0.3 | | 7x+6=0.2 | | 7x+6=0.6 | | 0.9•6x+9=(7+7) | | 0.9•5x+6=6+7 | | -6y+4=-6-y | | 64=4p(16/p) | | 0.9•12x=8-56 | | 7x+32+3x+48=180 | | -3-5(1-4p)=-8+4p | | 6x-38+3x+2=90 | | 0.5-6x=(5+12) | | 2|x-7|=8 | | 0.5-6x=(5x+12) | | NxN=1/9,N= | | 7^x=8 | |  x²+3x-1/70=0 | | 27−d=20 | | -18=5(2-x | | -6x-14+102=154 | | f/5− 2=5 | | 2x-(12)=2x | | r-17.5=-4.4 | | (2u-3)(1-u)=0 |

Equations solver categories