If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x^2+36x=0
a = 21; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·21·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*21}=\frac{-72}{42} =-1+5/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*21}=\frac{0}{42} =0 $
| 15n+25=(3n+5) | | 4/12x480=160 | | 5x/x+1=4 | | 10x3-2x=4 | | 8x-2=7x-6 | | (x-2)+6=50 | | 2x+5=4x7 | | 2/3x*x=3/4 | | X+1/2+2x-1/3=5/6 | | (9x-3x)+4=0 | | 19-7x=17+x | | 10x+7=6x-13=90 | | 0-4x=2 | | 0=1+14i | | 6r+7=4r+21 | | -4k3-8k2+5k=0 | | 6r+7=4r=21 | | 7/8+x=4 | | 10m/5=8 | | 19-7x=x+17 | | 4(x-1)=1/2(x+8) | | 41/8=21/4m+3 | | -3x-8=16+3x | | -11=17-5v | | t-2/3=3/425 | | 3^2x=34 | | 8x+48=-40 | | x+(9*(5+x))/5=9-x | | 10+5(z-12)=0 | | 30/1x=7/1+18/2x^2 | | 6-4w=20 | | 3(5c+2)-4(c-5)=3 |