If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21r^2+22r-8=0
a = 21; b = 22; c = -8;
Δ = b2-4ac
Δ = 222-4·21·(-8)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-34}{2*21}=\frac{-56}{42} =-1+1/3 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+34}{2*21}=\frac{12}{42} =2/7 $
| 1x-5-3x=7x+4 | | 2-2=18x+13x | | (6y-15)=(3y+6) | | -9x=19-(-17) | | 3x+6+3x+6+3x+6=90 | | 11(2x-1)=8(2x-1)+11 | | 5(x+9)=13-(x+7) | | 5x^2+2x+14=65 | | -9-5=4x+4-3x | | 8x-2x+56=8x+32 | | n+(12-2n)=255 | | (36+4y)=52 | | 8x−2x+56=8x+32 | | (5x+25)+2(4x-34)=180 | | x/8=-27 | | x−2=−0.7x | | 3.9x−2.1=11.2x+51.7 | | 1/4z-1/2z=1/2-1 | | 5w-12w=35 | | 2/3h=40/60 | | (-2+9i)(6+i)=0 | | 0=7t^2-13t-2 | | .04x+x=620 | | 4(3z+-7)+3(5z+1)=906 | | (20g)(-3)(/4)=g=-20 | | 4(3z+-7)+3(5z+1)=956 | | 4(3z+-7)+3(5z+1)=1056 | | 4(3z+-7)+3(5z+1)=1556 | | (2y)(4-6)=8y= | | 4q+9=-(2q-1) | | -9x-11x+22=7x+25 | | (3-2x)(25-2x)=494 |