If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20y^2-13y-2=0
a = 20; b = -13; c = -2;
Δ = b2-4ac
Δ = -132-4·20·(-2)
Δ = 329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{329}}{2*20}=\frac{13-\sqrt{329}}{40} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{329}}{2*20}=\frac{13+\sqrt{329}}{40} $
| 202y-13y-2=0 | | 20y-13y-2=0 | | 3/5m=5/8 | | (4x-15)+(5x-3)=360 | | 2n=4+9=0 | | 2b=13/2 | | 75-5x=30 | | 3x+3/5x=18 | | -9-3x=21+12x | | X+8y-5=0 | | 4x+2=1-3x | | 3x/44=65 | | 5x2-36x+5=0 | | 2y=5y-3 | | 5x+7/2=4/2x-14 | | 4x/3-7=4x+3x | | 4.2(x-2)=14.7 | | 15a-3a=35 | | 7y-9=2y+5 | | 3a^2-9a=-3 | | 3a^2-10a=-9 | | 6a^2-10a=-9 | | 9a^2-10a=-9 | | 27=n/9 | | 3a^2-10a=-3 | | F(n)=2-5 | | 968.77+x=150 | | 5x^2+23x-50=0 | | X+0.1x+0.06x=2180.80 | | 5x+8-4x=-3 | | 2/3x+2=-7 | | -9y+3=-69 |