If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x(1.05)x=50
We move all terms to the left:
20x(1.05)x-(50)=0
We multiply parentheses
21x^2-50=0
a = 21; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·21·(-50)
Δ = 4200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4200}=\sqrt{100*42}=\sqrt{100}*\sqrt{42}=10\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{42}}{2*21}=\frac{0-10\sqrt{42}}{42} =-\frac{10\sqrt{42}}{42} =-\frac{5\sqrt{42}}{21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{42}}{2*21}=\frac{0+10\sqrt{42}}{42} =\frac{10\sqrt{42}}{42} =\frac{5\sqrt{42}}{21} $
| x+4/2=x+3 | | 10p+2p=6*8 | | a-3a=8 | | 3+2w=7-3w | | 12x²+8x=0 | | 3(x-1)+2(2x+1)=4 | | -6x-11=-8 | | 3z÷10+8=10 | | 15x^2-14x+8=0 | | 5x+27=29 | | 8=16d | | x2-80x+500=0 | | -10+x+8=-24 | | 10x+7=-5 | | 434t565576= | | 6(x-2)=+4 | | 7x−4=2x+11 | | 9a^2+21a+10=0 | | 7x—2=x–16 | | 5(a-1)=-2a+3(a+5) | | 9(x1)=81 | | f=5/6 | | 6(x1)=81 | | 7x1=1/49 | | 3(2x-1=15 | | 2(3x-2)+6=14 | | 7+2x+2x=-17 | | 3+x+2x=-21 | | 7x+8=+40 | | z/10=6/5 | | -8-5x=-63 | | 8(x-2)+10=6(x+2) |