If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x2-80x+500=0
We add all the numbers together, and all the variables
x^2-80x+500=0
a = 1; b = -80; c = +500;
Δ = b2-4ac
Δ = -802-4·1·500
Δ = 4400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4400}=\sqrt{400*11}=\sqrt{400}*\sqrt{11}=20\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-20\sqrt{11}}{2*1}=\frac{80-20\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+20\sqrt{11}}{2*1}=\frac{80+20\sqrt{11}}{2} $
| -10+x+8=-24 | | 10x+7=-5 | | 434t565576= | | 6(x-2)=+4 | | 7x−4=2x+11 | | 9a^2+21a+10=0 | | 7x—2=x–16 | | 5(a-1)=-2a+3(a+5) | | 9(x1)=81 | | f=5/6 | | 6(x1)=81 | | 7x1=1/49 | | 3(2x-1=15 | | 2(3x-2)+6=14 | | 7+2x+2x=-17 | | 3+x+2x=-21 | | 7x+8=+40 | | z/10=6/5 | | -8-5x=-63 | | 8(x-2)+10=6(x+2) | | 7x·(3x−2)6−2·(7x2−2)4=52 | | d^2-10+21=0 | | 17-3x=14* | | 4f+10=2f-6 | | 2y2+9y-115=0 | | 2x+3/x-2=-3(1/2) | | 7x−16=2(2x−2) | | 2n+3=4n-17 | | 6y-4≤2y=7 | | 4y+30=200 | | 4y+90=200 | | 4x+14=98-10x |