200+(2/9)*x=500

Simple and best practice solution for 200+(2/9)*x=500 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 200+(2/9)*x=500 equation:



200+(2/9)*x=500
We move all terms to the left:
200+(2/9)*x-(500)=0
Domain of the equation: 9)*x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/9)*x+200-500=0
We add all the numbers together, and all the variables
(+2/9)*x-300=0
We multiply parentheses
2x^2-300=0
a = 2; b = 0; c = -300;
Δ = b2-4ac
Δ = 02-4·2·(-300)
Δ = 2400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2400}=\sqrt{400*6}=\sqrt{400}*\sqrt{6}=20\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{6}}{2*2}=\frac{0-20\sqrt{6}}{4} =-\frac{20\sqrt{6}}{4} =-5\sqrt{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{6}}{2*2}=\frac{0+20\sqrt{6}}{4} =\frac{20\sqrt{6}}{4} =5\sqrt{6} $

See similar equations:

| 3k^2-5k-28=0 | | 8^((x)/(17))=0.9 | | -15-9= | | h+12.5=12.5 | | 3(u-4)-4=-2(-8u+5)-5u) | | y=3(3)+4 | | -5=7-w | | 200+(2/9)x=500 | | x+24+25+135=180 | | t(1/30)=t(1/45) | | 8y-30-2y=6(y-5)D | | (Q-4)x4=8 | | 3b-12=-3 | | 3(y+5)=2y-4+yC | | -3(y+-11)=15 | | 2(x+2)-4x=8 | | -9h=30 | | 3(y+5)=2y-4+yB | | 8r-2r-4=14 | | 9(p-4=8 | | 15x-3=2x+6 | | 8r-2r=6 | | 49=-7(m-8) | | -3(-6y+9)-7y=2(y-5)-2 | | n2–2n–8=0 | | 6(n-1)=2(n-1 | | -2b+2=-12 | | 52=12+20x | | 3x+9+65+70=180 | | 36=4x+4(-2x-3) | | 52+12x=20x | | 5t-2(t-5)=29 |

Equations solver categories