2/3x-16=-x+10

Simple and best practice solution for 2/3x-16=-x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/3x-16=-x+10 equation:



2/3x-16=-x+10
We move all terms to the left:
2/3x-16-(-x+10)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
2/3x-(-1x+10)-16=0
We get rid of parentheses
2/3x+1x-10-16=0
We multiply all the terms by the denominator
1x*3x-10*3x-16*3x+2=0
Wy multiply elements
3x^2-30x-48x+2=0
We add all the numbers together, and all the variables
3x^2-78x+2=0
a = 3; b = -78; c = +2;
Δ = b2-4ac
Δ = -782-4·3·2
Δ = 6060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6060}=\sqrt{4*1515}=\sqrt{4}*\sqrt{1515}=2\sqrt{1515}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-78)-2\sqrt{1515}}{2*3}=\frac{78-2\sqrt{1515}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-78)+2\sqrt{1515}}{2*3}=\frac{78+2\sqrt{1515}}{6} $

See similar equations:

| Z(x)=-20 | | 133=2x+2(x+12) | | 5x+2+x^2-9+x^2-7x+12=63 | | -4|6-x|+4=-20 | | w^2+14w+57=0 | | x=95+-Y | | 2x^+7x-30=0 | | -6(x+1)-10=21+5 | | -152-7x=-17x+8 | | 19x+16=8x+126 | | x3+3x2+-10x-24=0 | | -2(3n-2)-(6n-5)=3(2n+(4-n) | | 2(f+3)=19 | | 2x*(2*21)=20 | | 126=6y | | (10/21)*2y=20 | | 10/21*2y=20 | | 2x*42=20 | | 3*7-9+24/4=a | | 10^(x+5)=100^(x) | | 4x-4=3x-6=-21 | | 7u-25=3(u-7) | | 334-x=412 | | -7x-30=2(x+3) | | -6+4(y+8)=36 | | F(-3)=-|1-x| | | -9x^2=81=0 | | 8x+24=16x-32 | | 30x+15=3(8-2x)-2 | | 10(2x-4)=6(2x+6) | | 279+x/4=80 | | (K-6)(3k+8)=0 |

Equations solver categories